Mitautor Stephan Roth an der Experimentierstation P03 der Röntgenlichtquelle Petra III des DESY. ©Bild: Heiner Müller-Elsner/DESY

Prof. Müller-Buschbaum mit seiner Gruppe im Labor. Die Synchrotron-Untersuchung liefert einen Ansatz für verbesserte Herstellungsverfahren. ©Bild: Andreas Heddergott/TUM

Die innere Struktur der aktiven Schicht der untersuchten Solarzelle ohne (links), mit (Mitte) und nach Verlust des Lösungsmittels im Betrieb (rechts). ©Bild: Christoph Schaffer / TUM

TUM: Röntgenblick zeigt Verschleiss von Polymersolarzellen

(TUM) Mit dem Röntgenblick der Forschungslichtquelle Petra III des Deutschen Elektronen-Synchrotrons (DESY) haben Wissenschaftler der Technischen Universität München (TUM) den Verschleiss von Polymersolarzellen beobachtet. Die Untersuchung liefert einen Ansatz zur Verbesserung der Langzeitstabilität solcher organischen Solarzellen.


Anders als bei konventionellen Solarzellen aus Silizium wird der Strom in organischen Solarzellen in einer aktiven Mischschicht aus zwei kohlenstoffbasierten Materialien erzeugt. Ist eines davon ein Polymer, spricht man oft von Polymersolarzellen. Diese sind besonders vielversprechend, weil ihre Herstellung sehr kostengünstig und einfach ist.

Neue Anwendungsgebiete
So lassen sich extrem leichte, biegsame und sogar halbtransparente Solarzellen über Druckverfahren auf flexiblen Kunststoffmaterialien erzeugen und damit vollkommen neue Anwendungsgebiete erschliessen. Organische Solarzellen sind in der Regel allerdings weniger effizient in der Umwandlung von Sonnenlicht in elektrische Energie als siliziumbasierte, und sie haben bisweilen eine kürzere Lebensdauer.

Die inneren Werte sind entscheidend
Die innere Struktur der aktiven Schicht ist für organische Solarzellen von zentraler Bedeutung. Bei der Herstellung müssen sich die beiden Materialien der aktiven Schicht aus einer gemeinsamen Lösung entmischen, ähnlich wie sich Öltropfen in Wasser bilden. „Es ist dabei wichtig, dass sich Polymerdomänen mit einer Grösse von wenigen zehn Nanometern formen“, betont der Hauptautor der Studie, Christoph Schaffer, Doktorand aus der Gruppe von Prof. Müller-Buschbaum, Inhaber des Lehrstuhls für Funktionelle Materialien der TU München. „Nur so können in der aktiven Schicht effizient positive und negative Ladungsträger erzeugt und auch voneinander getrennt werden. Ist die Struktur zu grob oder zu fein, funktioniert dieser Prozess nicht mehr, und die Solarzelle verliert an Effizienz.“

In modernen Kunststoffsolarzellen werden häufig sogenannte Low-bandgap-Polymere verwendet, die besonders viel Licht absorbieren. Sie benötigen oft während der Herstellung einen Lösungsmittelzusatz, um hohe Wirkungsgrade zu erreichen. Doch dieser Zusatz ist umstritten, weil er die Lebensdauer der Solarzellen weiter senken kann.

Röntgenblick ins Innere
Mit DESYs Röntgenlichtquelle Petra III haben die Wissenschaftler nun den Verschleiss solcher Low-bandgap-Polymersolarzellen mit Lösungsmittelzusatz näher untersucht. Dazu belichteten sie eine solche Solarzelle in einem Sonnenlichtsimulator und zeichneten kontinuierlich ihre elektrischen Kenndaten auf. Gleichzeitig durchleuchteten die Forscher die Solarzelle zu unterschiedlichen Zeiten mit dem scharf fokussierten Röntgenstrahl von Petra III.

Struktur und Leistungsdaten
Im Abstand von einigen Minuten erhielten sie so ein Bild von der inneren Struktur der aktiven Schicht auf der Nanometerskala. „Mit diesen Messungen lassen sich Struktur und Leistungsdaten der Solarzelle verknüpfen und im Verlauf der Zeit verfolgen“, erläutert Ko-Autor Prof. Stephan Roth, Leiter der DESY-Messstation P03, an der die Versuche stattfanden.

„Die Daten zeigen, dass Domänen auf der Längenskala von wenigen zehn Nanometern während des Betriebs stark schrumpfen und ihre geometrischen Grenzen zu der anderen Komponente verschwinden“, sagt Schaffer. Gleichzeitig liefern die Messungen Hinweise darauf, dass der Restgehalt an Lösungsmittelzusatz sinkt. Auf diese Beobachtungen führen die Wissenschaftler den gemessenen Effizienzverlust der Solarzelle zurück.

Strategien zur Verfestigung der Struktur
„Da es Indizien dafür gibt, dass der Restgehalt des Lösungsmittelzusatzes sinkt, müssen wir davon ausgehen, dass dieser Prozess die Lebensdauer der Solarzellen limitieren kann“, erläutert Müller-Buschbaum. „Es ist daher unabdingbar, nach Strategien zur Verfestigung der Struktur zu suchen. Dies könnte etwa durch chemische Vernetzung der Polymerketten oder durch massgeschneiderte Verkapselungsmaterialien bewerkstelligt werden.“

Die entscheidende Grösse
Die Münchner Forscher hatten in einer vorangegangenen Studie bereits den Verschleiss eines anderen Typs von Polymersolarzellen beobachtet. Bei dieser Solarzellenart zeigte sich, dass die Effizienz dadurch sank, dass die aktiven Zentren im Laufe des Betriebs wuchsen. Das legte nahe, solche Solarzellen mit einer eigentlich suboptimalen, etwas zu feinen Struktur herzustellen, die in den ersten Betriebsstunden dann zur optimalen Grösse heranwächst.

An diese Arbeit knüpft die neue Untersuchung an. „In unserer ersten Studie konnten wir sehen, dass die Effizienz durch eine Vergröberung der Struktur sinkt“, sagt Schaffer. „In der aktuellen Studie passiert genau das Gegenteil. Dieses Verhalten entspricht ganz unseren Erwartungen, weil die Zusammensetzung der aktiven Schicht anders ist. Die Materialien in der ersten Studie tendieren dazu, sich zu entmischen“, berichtet Schaffer weiter. „Hier ist nun das Gegenteil der Fall und man braucht den Lösungsmittelzusatz, um die benötigte Entmischung der Materialien für hohe Effizienzen zu erzeugen. Verschwindet im Betrieb der Lösungsmittelzusatz, verfeinert sich die Struktur wieder und entfernt sich damit von ihrem Optimum.“

Wichtige Ansätze
Beide Untersuchungen liefern wichtige Ansätze für eine gezielte Optimierung der Produktion organischer Solarzellen, wie Koautor Roth betont: „Das Zusammenspiel der beiden Studien ist ein sehr schönes Beispiel dafür, wie Messungen mit Synchrotronstrahlung auf der atomaren Skala wichtige Erkenntnisse für die Forschung gerade in anwendungsnahen Gebieten wie dem der erneuerbaren Energien liefern können.“

Publikation: Morphological Degradation in Low Bandgap Polymer Solar Cells – An In Operando Study; Christoph J. Schaffer, Claudia M. Palumbiny, Martin A. Niedermeier, Christian Burger, Gonzalo Santoro, Stephan V. Roth, and Peter Müller-Buschbaum, Advanced Energy Materials, 12.10.2016

Text: Technische Universität München (TUM)

0 Kommentare

Kommentar hinzufügen

Partner

  • Agentur Erneuerbare Energien und Energieeffizienz

Ist Ihr Unternehmen im Bereich erneuerbare Energien oder Energieeffizienz tätig? Dann senden sie ein e-Mail an info@ee-news.ch mit Name, Adresse, Tätigkeitsfeld und Mail, dann nehmen wir Sie gerne ins Firmenverzeichnis auf.

Top

Gelesen
|
Kommentiert