Die monolithische Photokathode besteht aus einer am Fraunhofer ISE entwickelten hocheffizienten Tandem-Zelle aus III-V-Halbleitern, kombiniert mit Rhodium-Nanopartikeln und kristallinem Titandioxid. ©Bild: ACS Energy Letters

Direkte solare Wasserspaltung: Forscher erzielen Rekord-Wirkungsgrad von 19 Prozent

(FI/ISE) Einem internationalen Forscher-Team ist es jetzt gelungen, den Wirkungsgrad für die direkte solare Wasserspaltung zur Wasserstoffgewinnung auf 19 Prozent zu steigern. Sie kombinierten dafür eine Tandem-Solarzelle aus III-V-Halbleitern mit Rhodium-Nanopartikeln und kristallinem Titandioxid. An der Forschungsarbeit waren Teams aus dem California Institute of Technology, der University of Cambridge, der TU Ilmenau und dem Fraunhofer-Institut für Solare Energiesysteme ISE beteiligt.


Ein Teil der Experimente fand am Institut für Solare Brennstoffe am Helmholtz-Zentrum Berlin statt.

Aufspaltung mit monolithischer Photoelektrode
Ein Lösungsansatz für den Umgang mit der fluktuierenden Solarstromgewinnung besteht darin, Sonnenlicht in Form von chemischer Energie zu speichern, konkret: mit Sonnenlicht Wasserstoff zu produzieren. Denn Wasserstoff lässt sich gut speichern und vielseitig nutzen, ob in einer Brennstoffzelle zum Erzeugen von Strom und Wärme oder als Ausgangsbasis für Brennstoffe. Kombiniert man Solarzellen mit Katalysatoren und weiteren funktionalen Schichten zu einer »monolithischen Photoelektrode« aus einem Block, wird die Aufspaltung von Wasser besonders einfach: dabei befindet sich die Photokathode im wässrigen Medium, und wenn Licht auf sie fällt, bildet sich auf der Vorderseite Wasserstoff, auf der Rückseite Sauerstoff.

Für die hier untersuchte monolithische Photokathode haben die Forscher eine am Fraunhofer ISE entwickelte hocheffiziente Tandem-Zelle aus III-V-Halbleitern mit weiteren funktionalen Schichten kombiniert. Dabei gelang es ihnen, die Verluste durch Lichtreflexion und Absorption an der Oberfläche deutlich zu verringern. »Darin besteht auch die Innovation«, erläutert Prof. Hans-Joachim Lewerenz, Caltech, USA: »Denn bereits 2015 konnten wir in einer früheren Zelle einen Wirkungsgrad von über 14 Prozent erreichen, damals ein Weltrekord. Hier haben wir die Antikorrosionsschicht durch eine kristalline Titandioxid-Schicht ersetzt, die nicht nur hervorragende Antireflexionseigenschaften besitzt, sondern an der auch die Katalysator-Teilchen haften bleiben«. Und Prof. Harry Atwater, Caltech, fügt an: »Ausserdem haben wir ein neues elektrochemisches Verfahren genutzt, um die Rhodium-Nanoteilchen herzustellen, die als Katalysatoren für die Wasserspaltung dienen. Sie messen nur 10 Nanometer im Durchmesser und sind damit optisch nahezu transparent, also ideal geeignet für ihre Aufgabe.«

Wirkungsgrad von 19.3 Prozent erzielt
Unter simulierter Sonneneinstrahlung erzielten die Wissenschaftler einen Wirkungsgrad von 19.3 Prozent (in verdünnter wässriger Perchlorsäure), in (neutralem) Wasser immerhin noch 18.5 Prozent. Dies reicht schon nah an den theoretisch maximalen Wirkungsgrad von 23 Prozent heran, der sich mit dieser Kombination von Schichten aufgrund ihrer elektronischen Eigenschaften erreichen lässt.

»Die kristalline Titandioxid-Schicht schützt die eigentliche Solarzelle nicht nur vor Korrosion, sondern verbessert durch ihre günstigen elektronischen Eigenschaften auch den Ladungstransport«, sagt Matthias May, der einen Teil der Experimente zur Effizienzbestimmung am HZB-Institut für Solare Brennstoffe durchgeführt hat, im Vorläuferlabor der Solar Fuel Testing Facility der Helmholtz Energy Materials Foundry (HEMF). Der nun publizierte Rekordwert basiert auf Arbeiten, die May bereits als Doktorand am HZB begonnen hatte und für die er 2016 den Helmholtz-Doktoranden-Preis im Forschungsbereich Energie erhielt. »Die Stabilität konnten wir auf knapp 100 Stunden steigern; das ist ein grosser Fortschritt im Vergleich zu Vorgängersystemen, die bereits nach 40 Stunden korrodiert waren. Dennoch bleibt hier noch viel zu tun«, erklärt May.

Wirkungsgrade jenseits von 20 Prozent möglich
Denn noch ist dies Grundlagenforschung an kleinen, hochpreisigen Systemen im Labor. Aber die Forscher sind optimistisch: »Diese Arbeit zeigt, dass massgeschneiderte Tandem-Zellen für die direkte solare Wasserspaltung das Potential haben, Wirkungsgrade jenseits von 20 Prozent zu erreichen. Ein Ansatz dafür ist die noch bessere Wahl der Bandlückenenergien der beiden Absorbermaterialien in der Tandem-Zelle. Und eines der beiden könnte dabei sogar Silizium sein«, erklärt Prof. Thomas Hannappel, TU Ilmenau. Teams am Fraunhofer ISE und der TU Ilmenau arbeiten daran, Zellen zu entwerfen, in denen III-V-Halbleiter mit dem preisgünstigem Silizium kombiniert werden, was die Kosten erheblich senken könnte.

Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency >>

Text: Fraunhofer-Institut für solare Energiesysteme ISE

show all

1 Kommentare

Max Blatter

Wow - diese Methode kannte ich noch gar nicht! Sie hat m.E. das Potenzial, die anderen beiden bekannten Methoden der solaren Wasserstoffgewinnung zu verdrängen: Den Umweg über solare Stromerzeugung - Elektrolyse, oder die Hochtemperatur-Thermolyse. - Ich werde das Verfahren jedenfalls zur Aufnahme in die Neuauflage meines Fachbuchs über "Erneuerbare Energien" vormerken!

Kommentar hinzufügen

Partner

  • Agentur Erneuerbare Energien und Energieeffizienz

Ist Ihr Unternehmen im Bereich erneuerbare Energien oder Energieeffizienz tätig? Dann senden sie ein e-Mail an info@ee-news.ch mit Name, Adresse, Tätigkeitsfeld und Mail, dann nehmen wir Sie gerne ins Firmenverzeichnis auf.

Top

Gelesen
|
Kommentiert