Der feste Elektrolyt dient als stabiles Trägermaterial für die Elektroden, die derzeit beidseitig per Siebdruck-Verfahren aufgetragen werden. ©Bild: Forschungszentrum Jülich / Regine Panknin

Prof. Rüdiger Eichel, Institutsleiter des IEK-9 am Forschungszentrum Jülich und Sprecher des Topics "Batteriespeicher" der Helmholtz-Gemeinschaft, mit einem Modell des Festkörperelektrolyten. ©Bild: Forschungszentrum Jülich / Sascha Kreklau

Testaufbau für Festkörperbatterie: Die Batterie von der Grösse einer Knopfzelle befindet sich in der Mitte des Plexiglasgehäuses, das die dauerhafte Kontaktierung der Batterie sicherstellt. Siehe Erklärung Textende ©Bild: FZ Jülich / R. Panknin

Forschungszentrum Jülich: Die Mischung macht’s - Forscher entwickeln schnellladefähige Festkörperbatterie

(FZ-Jülich) Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das bei Festkörperbatterien zehnmal grössere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Im Vordergrund stand dabei eine durchgängig gute Passfähigkeit. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.


Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum Laden benötigen. Etwa 10 bis 12 Stunden dauert es üblicherweise, bis eine Festkörperbatterie wieder voll ist. Der neue Zelltyp, den Jülicher Wissenschaftler entworfen haben, braucht dagegen weniger als eine Stunde, bis er wieder aufgeladen ist.

Günstigen Kombination der Materialien
"Mit den bisher beschriebenen Konzepten waren nur sehr geringe Lade-und Entladeströme möglich, die sich auf Probleme an den internen Festkörper-Grenzflächen zurückführen lassen. Hier setzt unser Konzept an, das auf einer günstigen Kombination der Materialien beruht und das wir auch schon patentiert haben", erklärt Dr. Hermann Tempel, Arbeitsgruppenleiter am Jülicher Institut für Energie- und Klimaforschung (IEK-9).

In herkömmlichen Lithium-Ionen-Batterien kommt ein flüssiger Elektrolyt zum Einsatz, der die Elektroden in der Regel sehr gut kontaktiert. Mit ihrer strukturierten Oberfläche nehmen die Elektroden die Flüssigkeit auf wie ein Schwamm, sodass eine grosse Kontaktfläche entsteht. Zwei Festkörper lassen sich prinzipiell nicht derart lückenlos miteinander verbinden. Der Übergangswiderstand zwischen den Elektroden und dem Elektrolyt fällt entsprechend höher aus.

Laderaten von über 3C
"Um dennoch einen möglichst grossen Stromfluss über die Schichtgrenzen hinweg zu ermöglichen, haben wir alle Komponenten aus sehr ähnlichen Materialien aufgebaut. Anode, Kathode und Elektrolyt wurden alle aus verschiedenen Phosphatverbindungen gefertigt, die Laderaten von über 3C (bei einer Kapazität von etwa 50 mAh/g) zu ermöglichen. Das ist zehnmal höher als die Werte, die man sonst in der Fachliteratur findet", erklärt Hermann Tempel.

Ohne giftige oder bedenkliche Stoffe
Als stabiles Trägermaterial dient der feste Elektrolyt, auf den die Phosphat-Elektroden beidseitig per Siebdruck-Verfahren aufgetragen werden. Die verwendeten Materialien sind recht preisgünstig zu haben und relativ leicht zu verarbeiten. Anders als herkömmliche Lithium-Ionen-Batterien kommt die neue Festkörperbatterie zudem weitgehend ohne giftige oder bedenkliche Stoffe aus.

"In ersten Tests erwies sich die neue Batteriezelle über 500 Lade- und Entladezyklen recht stabil und verfügte danach immer noch über 84 Prozent ihrer ursprünglichen Kapazität", berichtet Dr. Shicheng Yu. "Hier besteht allerdings noch Verbesserungspotenzial. Theoretisch sollte sogar ein Verlust von unter einem Prozent machbar sein", so Shicheng Yu, der die Batterie im Rahmen eines Förderprogramms des China Scholarship Council (CSC) am Jülicher Institut für Energie- und Klimaforschung (IEK-9) entwickelt und getestet hat.

Keine Überhitzung
Institutsleiter Prof. Rüdiger-A. Eichel ist von den Vorteilen des neuen Batteriekonzepts ebenfalls überzeugt. "Die Energiedichte ist mit aktuell rund 120 Milliamperestunden pro Gramm (mAh/g) schon sehr hoch, auch wenn sie noch etwas unter der von heutigen Lithium-Ionen-Batterien liegt", erklärt Eichel. Neben der Entwicklung für die Elektromobilität sieht der Sprecher des Topics "Batteriespeicher" der Helmholtz-Gemeinschaft künftige Anwendungsschwerpunkte für Festkörperbatterien auch auf anderen Gebieten: "Festkörperbatterien werden aktuell mit Hochdruck als Energiespeicher für Elektromobile der übernächsten Generation entwickelt. Wir glauben aber, dass Festkörperbatterien sich darüber hinaus auch in weiteren Anwendungsfeldern durchsetzen werden, bei denen es auf langlebige Betriebsdauern und sicheren Betrieb ankommt, wie etwa in der Medizintechnik oder bei integrierten Bauteilen im 'Smart Home' Bereich", so Eichel. "Da sie sich im Gegensatz zu Lithium-Ionen-Akkus bei Beschädigung auch nicht übermässig erhitzen oder sogar explodieren, wären sie auch für Smartphones und andere mobile Computer eine sichere Alternative."

Ausführliche Legenden 1. Bild links oben
1. Bild oben links: Testaufbau für die Festkörperbatterie: Die Batterie von der Grösse einer Knopfzelle befindet sich in der Mitte des Plexiglasgehäuses, welches die dauerhafte Kontaktierung der Batterie sicherstellt. Das patentierte Konzept beruht auf einer günstigen Kombination von Materialien. Alle Komponenten – Anode, Kathode und Elektrolyt – wurden aus verschiedenen Phosphatverbindungen gefertigt, die Laderaten von über 3C (bei einer Kapazität von etwa 50 mAh/g) ermöglichen.

Text: Forschungszentrum Jülich


0 Kommentare

Kommentar hinzufügen

Partner

  • Agentur Erneuerbare Energien und Energieeffizienz

Ist Ihr Unternehmen im Bereich erneuerbare Energien oder Energieeffizienz tätig? Dann senden sie ein e-Mail an info@ee-news.ch mit Name, Adresse, Tätigkeitsfeld und Mail, dann nehmen wir Sie gerne ins Firmenverzeichnis auf.

Top

Gelesen
|
Kommentiert