Montage der mit einem Riblet-Lack beschichteten Rotorblätter. ©Bild: Mertcan Bayar, E.ON Climate and Renewables, Schweden

Automatisierte Beschichtung des Riblets-Lacks auf Rotorblättern. ©Bild: Fraunhofer IFAM

Praxistest bestanden: Haifischhautlack steigert den Stromertrag von Windenergieanlagen

(FI/IFAM) Innerhalb des EU-Projekts Riblet4Wind stellte sich ein Team aus sieben Projektpartnern der Herausforderung, die Aerodynamik von Windkraftflügeln effizienter zu gestalten. Ein Ansatz dabei war den Luftwiderstand zu verringern. Im Flugzeugbau wurde gezeigt, dass die am Fraunhofer IFAM entwickelte funktionelle Beschichtung mit mikroskopisch kleinen Rillen – Riblet-Lack genannt – den Luftwiderstand reduziert und Treibstoff einspart.


Dieses Know-how haben sich die Wissenschaftler zunutze gemacht und die Technologie an Rotorblätter einer Windkraftanlage angepasst. Die Tests unter realen Bedingungen ergaben vielversprechende Ergebnisse.

Den Haien abgeschaut
Scheinbar ohne grossen Kraftaufwand gleiten Haie mit hoher Geschwindigkeit durch das Wasser. Mikroskopisch kleine Rillen auf ihrer Haut verhelfen ihnen zu dieser bemerkenswerten Geschwindigkeit. Dafür verantwortlich ist die reibungsminimierende Eigenschaft dieser Mikrostruktur, die die hydrodynamischen Eigenschaften des Fischkörpers optimiert. Die Wirkung beruht darauf, dass die turbulenten Wirbel, die quer zur Strömungsrichtung laufen, vermindert werden. Die Turbulenzreduzierung an der Grenzschicht führt zur Verringerung des Reibwiderstands. In der Strömungsmechanik macht man sich die Haifisch-Längsrillenstrukturen schon seit einigen Jahren in vielfältiger Weise zunutze.

Funktionsbeschichtung reduziert Strömungswiderstand
Um das Prinzip der Haifischhaut auf technische Einsätze zu übertragen, wurden in den Anfängen vorwiegend geriefte Klebefolien für Versuchszwecke eingesetzt. Für Anwendungen, bei denen gekrümmte Flächen beschichtet werden müssen oder es auf eine hohe Dauerhaftigkeit unter harschen Umweltbedingungen ankommt, ist der Einsatz der Folie jedoch schwierig. Aus diesem Grund hat das Fraunhofer IFAM eine lacktechnische Lösung entwickelt, bei der in einem einzigen Arbeitsschritt ein Lack flüssig aufgetragen, entsprechend fein gerillt strukturiert und anschliessend gehärtet wird. Der strömungstechnische Nutzen dieser Lackoberflächen wurde in der Vergangenheit für verschiedene grosstechnische Anwendungen, vor allem für die Luftfahrt und für die Schifffahrt, nachgewiesen. Doch wie verhält sich das System bei Windkraftanlagen und wie kann es zur Steigerung des Stromertrags sowohl bei Neuanlagen, als auch nachträglich an Bestandsanlagen aufgebracht werden?

Die bereits im Vorfeld durchgeführten Windkanalversuche zum Einfluss des Riblet-Lacksystems auf die aerodynamischen Eigenschaften an einem Modell eines Rotorblatts haben zu erfolgsversprechenden Ergebnissen hinsichtlich der Leistungssteigerung bei Windenergieanlagen geführt. Auf Basis dieser Ergebnisse resultierte die Prognose, dass sich durch das Lacksystem des Fraunhofer IFAM die aerodynamische Qualität der Rotorblätter signifikant steigern lässt – und zwar ohne zusätzliche Lasten für die Konstruktion der Windenergieanlage, da die leistungssteigernde Funktion in das Lacksystem integriert ist.

Aerodynamische Effizienzsteigerung von 10%
Im ersten Schritt des Projekts Riblet4Wind wurden weitere umfangreiche Windkanal-Testreihen an einem 2D-Profil mit Riblet-Strukturen durchgeführt. Es wurde eine signifikante aerodynamische Effizienzsteigerung von 10% gemessen. Während der anschliessenden Entwicklungsphasen innerhalb des Projekts hatte jeder Partner für die Anpassung des Riblet-Systems auf die Grossstrukturen der Rotorblätter seine spezielle Aufgabe: Von der bionic surface technologies GmbH wurde mittels Strömungssimulation und Windkanaltests die optimale Geometrie für die ausgewählte Windkraftanlage ermittelt, Ingenieure der Firma Mankiewicz haben das Lacksystem entwickelt, das Fraunhofer IFAM stellte den Lack-Applikator, der mit einer für die Rotorblattbeschichtung adaptierten Robotik der Firma Eltronic zu einem automatisierten Applikationssystem kombiniert wurde.

Zur Demonstration der Technologie wurde eine bestehende AN Bonus-Windenergieanlage mit einer Nennleistung von 450 kW und einem Rotordurchmesser von 37 Metern verwendet. Diese Anlage und eine weitere Turbine des gleichen Typs stehen in Bremerhaven und werden von der Muehlhan Deutschland GmbH betrieben. E.ON Climate & Renewables war federführend bei der Erfassung der Leistungsdaten.

Betrieb im Originalzustand und mit Riblet-Beschichtung
Um die Veränderungen der Leistungscharakteristik beurteilen zu können, wurden die Windkraftanlagen für einen Zeitraum von zwölf Wochen im Originalzustand betrieben und die entsprechenden Leistungsdaten ermittelt. Anschliessend wurden die Rotorblätter einer Anlage demontiert und mit der Riblet-Beschichtung versehen. Hier konnte erstmals der automatisierte Auftrag des Riblet-Lacks auf ein Grossbauteil demonstriert werden. Nach erfolgter Montage der behandelten Rotorblätter wurde die Leistungscharakteristik der Anlagen über fünf Monate nach einem standardisierten Verfahren gemessen. Weiterhin wurden Parameter wie Verschleiss und Verschmutzung ermittelt.

Obwohl es sich bei den Anlagen um ältere Turbinen (ca. 20 Jahre) mit entsprechenden Abnutzungserscheinungen handelte, die zudem keine Rotorblätter mit verstellbarem Anstellwinkel haben, konnte eine Verbesserung der Leistungscharakteristik durch die Beschichtung gezeigt werden. Aufgrund aussergewöhnlicher Wetterbedingungen, gekennzeichnet durch grössere Zeiträume mit wenig Wind und daraus resultierender grosser Streuung der Messdaten, lässt sich die Verbesserung jedoch nicht mit Sicherheit quantifizieren. Die Abnutzung der Strukturen war im betrachteten Zeitraum vernachlässigbar.

Industrielle Reife im Blick
Das Projekt Riblet4Wind hat den Nachweis erbracht, dass eine Riblet-strukturierte Beschichtung automatisiert auf Windenergie-Rotorblätter aufgebracht werden kann und zu einer Verbesserung der Leistungscharakteristik führt. Es ist sehr wahrscheinlich, dass diese Technologie in den nächsten Jahren zur industriellen Reife gebracht wird und eine flächendeckende Anwendung findet. Ein sinnvoller nächster Schritt wäre die Demonstration auf einer dem heutigen Standard entsprechenden Anlage (> 2MW Leistung mit verstellbaren Rotorblättern), um das wirtschaftliche Potenzial dieser Technologie weiter quantifizieren zu können.

Text: Fraunhofer IFAM

Artikel zu ähnlichen Themen

0 Kommentare

Kommentar hinzufügen