Eingebettetes Silizium-Carbid auf dem Weg zur Serienproduktion in der Elektromobilität. ©Bild: Volker Mai/Fraunhofer IZM

Fraunhofer IZM: E-Auto auf der Überholspur - dank zuverlässiger Leistungselektronik

(IMZ) Silizium-Carbid wird seit mehreren Jahren in der Forschung als vielversprechendes alternatives Material in der Halbleiter-Branche getestet. Im Projekt SiC Modul wollen Forscherinnen und Forscher des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM gemeinsam mit ihren Partnern den Leistungshalbleiter auf den Weg zur industriellen Fertigung bringen und somit die Effizienz des Antriebssystems von Elektrofahrzeugen und damit auch ihre Reichweite weiter erhöhen.


Skeptiker der Elektromobilität werfen kritische Fragen auf, zum Beispiel wie schnell ein E-Auto fahren und welche Strecken man damit maximal zurücklegen kann. Das hängt von der eingebauten Leistungselektronik ab – elektronisch gesehen das Herz der Elektromobilität. Beim Einbau der Leistungselektronik sind drei Faktoren entscheidend: Platz, Gewicht und Wirkungsgrad. Das neue Halbleitermaterial Silizium-Carbid (SiC) erfüllt alle Bedingungen, denn es hat einen höheren Wirkungsgrad und kann kompakter verbaut werden als gängige Halbleiter wie Silizium.

Trotzdem fährt heute noch kein E-Auto auf der Strasse, in dem Silizium-Carbid verbaut ist. Das Halbleitermaterial wird bisher nur im Forschungsumfeld eingesetzt. Um das Material nun auch innerhalb der industriellen Fertigung zu verwenden, werden in dem Projekt SiC Modul Rahmenbedingungen aus der Industrie von Anfang an mitgedacht. Zum Beispiel beruht das Modul, das Forscherinnen und Forscher am Fraunhofer IZM entwickeln, auf einem klassischen Leiterplattenaufbau, wie er in der Industrie bereits etabliert und leicht umsetzbar ist.

Verkürzte Strompfade und optimierte Leistungsführung
Gleichzeitig werden in dem Modul die neuesten Erkenntnisse aus der Forschung verbaut: Der Halbleiter wird nicht mit einer Drahtbondverbindung kontaktiert, sondern direkt über einen galvanisch hergestellten Kupferkontakt in die Schaltung eingebettet, so dass die Kabellänge verkürzt und die Leistungsführung optimiert werden kann. Auch dabei bezieht das Forscherteam den potenziellen Kunden in die Entwicklung ein: Im ersten Projektjahr wurde ein Lastenheft erstellt, in dem die elektrischen, thermischen und leistungsfähigen Anforderungen an Modul und Halbleiter definiert wurden. Die Spezifikationen, die das Produkt erfüllen muss, haben die Forschenden in enger Zusammenarbeit mit Anwendern aufgestellt und abgestimmt. Die Dimensionierung und elektrische Auslegung der leistungselektronischen Module erfolgte dabei in direkter Zusammenarbeit mit Automobilhersteller, Baugruppenzulieferer und Baugruppenfertiger. Dadurch ist es möglich, eine optimale Bauraumnutzung im Antriebsstrang des Fahrzeugs zu realisieren. Lars Böttcher ist Gruppenleiter am Fraunhofer IZM und Teilprojektleiter für das SiC-Projekt. Er erklärt: »Wir gehen über die generelle Machbarkeit hinaus«, denn in dem Projekt entwickeln wir mehr als nur einen Prototyp«. Das Ziel ist daher, sowohl das neue Halbleitermaterial Silizium-Carbid, als auch die Einbett-Technik auf den Weg zur Serienproduktion zu bringen.

Die Projektpartner
Das Projekt wird vom deutschen Bundesministerium für Bildung und Forschung im Rahmen des E-Mobility-Calls mit einem Projektvolumen von 3.89 Millionen Euro gefördert und läuft von Januar 2018 bis Dezember 2020. Neben dem Fraunhofer IZM sind mit AixControl – Gesellschaft für leistungselektronische Systemlösungen mbH, der Conti Temic microelectronic GmbH, der Rheinisch-Westfälischen Technischen Hochschule Aachen, der Robert Bosch GmbH, der Schweizer Electronic AG, der TLK-Thermo GmbH sechs weitere Partner in dem Projekt beteiligt.

Text: Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

show all

1 Kommentare

make

Trotzdem fährt heute noch kein E-Auto auf der Strasse, in dem Silizium-Carbid verbaut ist....

siehe:
https://www.pntpower.com/tesla-model-3-powered-by-st-microelectronics-sic-mosfets/

Kommentar hinzufügen

Top

Gelesen
|
Kommentiert