Dreifachsolarzellen aus III-V-Halbleitern und Silicium haben das Potenzial, die Photovoltaik auf ein neues Effizienzniveau zu heben. ©Bild: Fraunhofer ISE

IV-Kennlinien der beiden neuen Dreifachsolarzellen aus III-V-Halbleitern und Silicium, vermessen im Fraunhofer ISE CalLab PV Cells unter AM1.5g Normbedingungen. Die Zellfläche beträgt jeweils 4 cm2. ©Bild: Fraunhofer ISE

Fraunhofer ISE: Zwei Wirkungsgrad-Rekorde für monolithische Dreifachsolarzellen auf Siliciumbasis

(ISE) Am Fraunhofer ISE ist es gelungen, den Wirkungsgrad für monolithische Dreifachsolarzellen aus III-V-Halbleitern und Silicium nochmals zu erhöhen: Die Zellen nutzen durch die Kombination von mehreren Absorbermaterialien das Sonnenspektrum energetisch deutlich besser aus als konventionelle Siliciumsolarzellen. Der Weltrekord für eine durch Waferbonden hergestellte monolithische Mehrfachsolarzelle verbesserte sich auf 34.1%. Der neue Rekord für eine Zelle mit direkt abgeschiedenen Halbleiterschichten beträgt 24.3% erzielt.


»Monolithische Mehrfachsolarzellen gelten als Hoffnungsträger für die Weiterentwicklung der heute dominierenden Siliciumsolarzellen, weil sich mit ihnen deutlich höhere Wirkungsgrade für die Umwandlung von Sonnenlicht in elektrischen Strom realisieren lassen. Wir halten Wirkungsgrade von 36 % für möglich, womit das physikalische Limit einer reinen Siliciumsolarzelle von 29.4 % deutlich übertroffen wird«, erklärt Dr. Andreas Bett, Institutsleiter des Fraunhofer ISE. Die hohe Effizienz erlaubt es, mehr Leistung pro Fläche zu generieren und damit Materialien für Solarzellen und Modulmaterialien einzusparen – ein wichtiger Aspekt für die Nachhaltigkeit der Photovoltaik.

Wenige Mikrometer dünne Schichten aus III-V-Halbleitern
Für die hocheffiziente Mehrfachsolarzelle werden wenige Mikrometer dünne Schichten aus III-V-Halbleitern auf eine Siliciumsolarzelle aufgebracht. Die unterschiedlichen Schichten absorbieren verschiedene Spektralbereiche des Sonnenlichts, um dieses optimal zu nutzen: Gallium-Indium-Phosphid zwischen 300 - 660 nm (sichtbares Licht), Aluminium-Gallium-Arsenid zwischen 600 - 840 nm (nahes Infrarotlicht) und Silicium zwischen 800 - 1200 nm (längerwelliges Licht). So können die Wirkungsgrade von Siliciumsolarzellen signifikant gesteigert werden. Da sie wie eine normale heutige Siliciumsolarzelle über jeweils einen Kontakt auf Vorder- und Rückseite verfügen, lassen sich die Solarzellen leicht in Solarmodule integrieren.

Gebondete Mehrfachsolarzelle: 34.1% Wirkungsgrad
Für die monolithische Mehrfachsolarzelle kommt das aus der Mikroelektronik bekannte Verfahren des direkten Waferbondens zum Einsatz. Dafür werden in einem ersten Schritt die III-V-Schichten auf einem Gallium-Arsenid-Substrat abgeschieden. Anschliessend werden die Oberflächen in einer Kammer unter Hochvakuum mit Hilfe eines Ionenstrahls deoxidiert und unter Druck miteinander verpresst. Die Atome der III-V-Halbleiterschichten gehen Bindungen mit dem Silicium ein und bilden eine Einheit. Verschaltet sind die übereinander gestapelten Teilzellen aus GaInP, AlGaAs und Silicium durch Tunneldioden. Anschliessend wird das GaAs-Substrat nasschemisch entfernt und ein nanostrukturierter Rückseitenkontakt sowie eine Antireflexbeschichtung und ein Kontaktgitter auf der Vorderseite aufgebracht.

»Gegenüber früheren Ergebnissen wurden die Abscheidebedingungen noch einmal verbessert und eine neue Zellstruktur für die oberste Teilzelle aus Gallium-Indium-Phospid eingeführt, die das sichtbare Licht noch besser wandelt. Mit 34.1 % zeigt die Zelle das enorme Potenzial dieser Technologie«, erklärt Dr. Frank Dimroth, Abteilungsleiter III-V-Photovoltaik und Konzentratortechnologie am Fraunhofer ISE. Der bisherige Weltrekord für diese Zellklasse lag bei 33.3%.

Mehrfachsolarzelle mit direkt abgeschiedenen Halbleiterschichten: 24.3 % Wirkungsgrad
Eine andere Möglichkeit der Realisierung von Mehrfachsolarzellen ist das direkte Abscheiden der III-V-Halbleiterschichten (GaInP/GaAs) auf die Siliciumsolarzelle. Dieses Verfahren erfordert deutlich weniger Prozessschritte als das Waferbonden und vermeidet den Einsatz des teureren GaAs-Substrats, weshalb es für eine industrielle Umsetzung der Technologie vorteilhaft ist. Allerdings muss die atomare Struktur sehr gut kontrolliert werden, so dass die Gallium- und Phosphor-Atome an der Grenzfläche zu Silicium die korrekten Gitterplätze einnehmen. Auch können Defekte in den Halbleiterschichten die Effizienz der Solarzellen beeinträchtigen. »Hier konnten wir einen wichtigen Fortschritt erzielen – die Stromgeneration in den drei Teilzellen leidet kaum noch unter diesen Defekten, sodass wir weltweit erstmals einen Wirkungsgrad von 24.3 % für diese Technologie realisieren konnten«, so Dr. Frank Dimroth. »Das Potenzial entspricht demjenigen der wafergebondeten Zelle und hier haben wir in den nächsten Jahren noch einige Entwicklungsarbeit vor uns, um dies zu demonstrieren«. Im Dezember 2018 hatte das Fraunhofer ISE eine solche Solarzelle mit einem Wirkungsgradrekord von 22.3 % vorgestellt.

Auf dem Weg zu einer industriellen Massenfertigung von monolithischen Mehrfachsolarzellen sehen die Fraunhofer ISE-Forscher Herausforderungen insbesondere in einem kostengünstigen Prozess zur Herstellung der III-V-Halbleiterschichten. Hier ist das direkte Wachstum auf Silicium aktuell der vielversprechendste Ansatz. Es wird aber auch an Methoden geforscht, bei denen die GaAs-Substrate nach der Übertragung der Halbleiterschichten auf Silicium viele Male recycelt werden. Für kosteneffiziente Durchsätze in der Solarzellen-Produktion müssen auch neue Anlagen entwickelt werden, um eine Abscheidung auf grösseren Substraten und in kürzerer Zeit zu erreichen. Dies sind Ansätze, welche die Forscher am ISE in den kommenden Jahren verfolgen werden.

Die Arbeiten zu der wafergebondeten Solarzelle werden gefördert durch das Bundesministerium für Wirtschaft und Energie (Projekt PoTaSi, FKz. 0324247). Die Arbeiten zu der direkt gewachsenen Zelle, an der als Partner Aixtron SE, die TU Ilmenau und die Philipps-Universität Marburg beteiligt waren, wurden durch das Bundesministerium für Bildung und Forschung gefördert (Projekt MehrSi, FKz. 03SF0525

Text: Fraunhofer ISE

0 Kommentare

Kommentar hinzufügen

Top

Gelesen
|
Kommentiert