Doktorandin Dandan Gao experimentiert mit einem speziellen Katalysatormaterial aus einem edelmetallfreien Metalloxid-Gemisch. ©Bild: Andrea Weber-Tuckermann / Uni Ulm

Elektrokatalyse: Uni Ulm entwickelt Edelmetall-freien Katalysator mit Multi-Tasking-Talent

(PM) Die elektrokatalytische Wasserspaltung gilt als Schlüsseltechnologie für die Entwicklung von Brennstoffzellen, die für die Speicherung von Wind- und Sonnenenergie eingesetzt werden können. Ulmer Chemiker haben nun einen Edelmetall-freien Komposit-Katalysator entwickelt, der bei der Spaltung von Wasser sowohl für die Entwicklung von Sauerstoff als auch von Wasserstoff eingesetzt werden kann. Veröffentlicht wurden die Ergebnisse des Projekts in der renommierten Fachzeitschrift ‚Angewandte Chemie‘.


„Die elektrochemische Reaktion bei der Wasserspaltung läuft in zwei chemischen Halbreaktionen ab. Einerseits wird dabei Wasserstoff ausgegast und andererseits Sauerstoff“, erklärt Professor Carsten Streb vom Institut für Anorganische Chemie I an der Universität Ulm. In herkömmlichen elektrochemischen Katalysatorsystemen kommen bei diesen beiden Halbreaktionen unterschiedliche Materialien zum Einsatz. Ulmer Chemiker aus Professor Strebs Labor haben nun in Kooperation mit Materialwissenschaftlern aus China ein Edelmetall-freies Komposit-Material entwickelt, das sich in beiden Teilreaktionen gleichermassen bewährt hat.

Der Vorteil
„Das bi-funktionale Katalysator-Material vereinfacht das Design und die Fertigung von Systemen für die elektrochemische Wasserspaltung. Ausserdem können so wechselseitige Verunreinigungen und Materialunverträglichkeiten vermieden werden, die bis zur ‚Vergiftung‘ des Katalysators reichen“, erklärt Dandan Gao. Die Ulmer Doktorandin ist Erstautorin der Studie.

Edelmetall-freies bi-funktionales Verbundmaterial
Um elektrochemische Wasserspaltungssysteme im industriellen Massstab realisieren zu können, braucht es Katalysatoren, die ohne Edelmetalle wie Platin oder Iridium auskommen. Trotzdem müssen diese eine hohe Reaktivität aufweisen sowie sehr stabil und langlebig sein. Die Ulmer Chemiker haben nun ein modulares Design für ein solches Edelmetall-freies bi-funktionales Verbundmaterial entwickelt, das diese Voraussetzungen erfüllt. „Wir verwenden dafür sowohl hochreaktives Kobalt-Oxid als auch halbleitendes Kupfer-Oxid, das den Elektronentransport verstärken soll. Dritter im Verbund ist Wolfram-Oxid, das das Katalysator-Material strukturell und chemisch stabilisieren soll, um es langlebiger zu machen“, erklärt Gao.

Mit Hilfe einer hydrothermalen Reaktion wird dieses Metall-Oxid-Gemisch auf einer Elektrode aus herkömmlichem makroporösem Kupferschaum abgeschieden. Der Kupferschaum ist elektrisch sehr leitfähig und hat eine grosse Reaktionsoberfläche. Zugleich sind dessen Mikrostrukturen gut zugänglich für den Elektrolyten und erleichtern damit die Freisetzung der Gase an der Elektrodenoberfläche.

Verankerung – die grösste Herausforderung
„Die grösste Herausforderung bestand darin, die Metall-Oxide mit ihren unterschiedlichen Funktionalitäten auf der Oberfläche der Kupferschaum-Elektrode zu verankern. Und zwar so, dass das synthetisierte Material sowohl chemisch, als auch mechanisch und elektrisch stabil bleibt“, so Projektleiter Streb. Mit dem Ergebnis sind die Wissenschaftler sehr zufrieden.

So wurde mit volumetrischen Messungen die katalytische Leistungsfähigkeit untersucht: Mit elektronenmikroskopischen und röntgenspektroskopischen Analysen konnten nicht nur die Materialstrukturen im Nano- und Mikrometerbereich sichtbar gemacht werden, sondern auch die chemische Beschaffenheit, die kristalline Struktur und die räumliche Verteilung der unterschiedlichen Metall-Oxid-Nanostrukturen nachgewiesen werden. In den rasterelektronenmikroskopischen Aufnahmen kann man beispielsweise die Nadelstruktur der sehr leitfähigen Nanodrähte aus Kupferoxid hervorragend erkennen. Beteiligt an dem Projekt waren auch Elektronenmikroskopie-Experten um die Ulmer Professorin Ute Kaiser.

Originalpublikation
Modular design of noble metal-free mixed metal oxide electrocatalysts for complete water splitting >>, Dandan Gao, Rongji Liu, Johannes Biskupek, Ute Kaiser, Yu-Fei Song, Carsten Streb. In: Angewandte Chemie, first published 07 February 2019.

Text: Universität Ulm

0 Kommentare

Kommentar hinzufügen

Newsletter abonnieren

Top

Gelesen
|
Kommentiert