12. Sep 2018

Das neue Katalysatorsystem funktioniert als Multifunktionswerkzeug zur Trennung der Bindungen im Wassermolekül. ©Bild: C. Hohmann, NIM

Solare Wasserspaltung: Neues Katalysatorsystem funktioniert als Multifunktionswerkzeug

(LMU) Die Spaltung von Wasser mittels Sonnenlicht ist ein möglicher Ansatz für die Speicherung erneuerbarer Energie. Ein neues Katalysatorsystem im Nanoformat lässt erstmals alle Reaktionsschritte einer solchen künstlichen Photosynthese an einem einzigen Halbleiter-Partikel ablaufen.


Bei der Photokatalyse wird Wasser mit Hilfe von Sonnenlicht in Sauerstoff und den Energieträger Wasserstoff aufgespalten. Die effiziente Umsetzung dieses Verfahrens ist allerdings technisch sehr anspruchsvoll, da verschiedene Prozesse beteiligt sind, die sich gegenseitig beeinträchtigen. Physikern der Ludwig-Maximilians-Universität München (LMU) ist in Kooperation mit Chemikern der Universität Würzburg (JMU) nun erstmals gelungen, Wasser in einem einzigen System mithilfe von sichtbarem Licht vollständig zu spalten. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Energy.

Halbreaktionen müssen gleichzeitig laufen
Bei der photokatalytischen Wasserspaltung werden mittels synthetischer Komponenten die komplexen Prozesse nachgebildet, die bei der natürlichen Photosynthese ablaufen. Im Prinzip absorbieren dabei als Photokatalysatoren dienende Halbleiter-Nanopartikel Lichtquanten (Photonen). Ein Photon regt im Halbleiter eine negative Ladung (ein Elektron) und eine positive Ladung (ein sogenanntes „Loch“) an, die sich räumlich trennen müssen, damit Wasser von dem Elektron zu Wasserstoff reduziert beziehungsweise vom Loch zu Sauerstoff oxidiert werden kann.

„Wenn man nur Wasserstoff aus Wasser herstellen will, werden die Löcher meistens schnell mittels chemischer Reagenzien entfernt“, sagt Jacek Stolarczyk von der LMU. „Für eine vollständige Wasserspaltung müssen die Löcher aber bleiben und den langsamen Wasseroxidationsprozess vorantreiben.“ Die Schwierigkeit besteht dann darin, beide Halbreaktionen so auf einem Partikel zu kombinieren, dass sie gleichzeitig ablaufen – und zwar ohne, dass die dabei entstehenden entgegengesetzten Ladungen rekombinieren. Zudem werden die meisten Halbleiter durch die positiven Ladungen angegriffen und zerstört.

Nanostäbchen mit separaten Reaktionsräumen
„Den Durchbruch haben wir geschafft, indem wir Nanostäbchen des Halbleiters Cadmiumsulfid verwendeten und die Reduktions- und Oxidationsreaktion auf diesen Nanokristallen räumlich trennten“, sagt Stolarczyk. An den Spitzen der Stäbchen positionierten die Wissenschaftler winzige Platinpartikel, die bei der Photoreaktion entstehende Elektronen aufnehmen. Wie die LMU-Physiker bereits früher zeigen konnten, funktioniert diese Anordnung als wirksamer Photokatalysator für die Reduktion von Wasser zu Wasserstoff. Die Oxidation dagegen findet an den Seiten der Nanostäbchen statt: Auf den gesamten Seitenflächen platzierten die LMU-Physiker Oxidationskatalysatoren auf Rutheniumbasis, die vom Team um Frank Würthner (JMU) entwickelt wurden und die mit speziellen Ankergruppen an den Nanostäbchen fixiert werden . „Die Verankerung ermöglicht eine extrem schnelle Übertragung des Lochs auf den Katalysator, sodass eine effektive Sauerstofferzeugung stattfinden kann und die Cadmium-Nanostäbchen nicht geschädigt werden“, sagt Peter Frischmann, einer der Initiatoren des Forschungsprojekts am Standort Würzburg.

Die Wissenschaftler führten ihre Studie im Rahmen des interdisziplinären Projekts Solar Technologies Go Hybrid (Soltech) durch.

Artikel in Nature Energy 2018 >>

Text: Ludwig-Maximilians-Universität München (LMU)

1 Kommentare
> alle lesen
Max Blatter @ 14. Sep 2018 10:39

Spannend - nützlich - zukunftsträchtig: Thumbs up!

Kommentar hinzufügen

Newsletter abonnieren

Follow us

In order to provide the best quality for you, our system uses "cookies", which are stored on your device. Cookies are necessary to identify what information (job advertisement, questionnaire, etc) you have already seen. IP address is used for the same purposes as described above.

When creating a profile, applying to the newsletter, job subscriptions and etc, you agree that the data, which you have entered, will be stored and processed in the system in order to provide services, which you have applied for.

We do NOT sell your personal data to any 3rd party services.

You must be 18 or older years old to use our services. If you are underage, you must have a permission to use our services from your parent or guardian. It is necessary in order to store and process your data.

By continuing to use our services, you agree with the these terms. You can withdraw your agreement at any time, by deleting cookies from your device and by sending request for deleting your data to the administrator.

Close