17. Apr 2018

Mehrfachsolarzelle aus III-V-Halbleitern und Silicium, die 33.3 Prozent des Sonnenlichts in Strom wandelt. ©Bild: FI/ISE, Dirk Mahler

Mehrfachsolarzelle auf Siliciumbasis: Wandelt 33.3 Prozent des Sonnenlichts in Strom um

(FI/ISE) Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben gemeinsam mit EVG eine neue Mehrfachsolarzelle auf Silicium entwickelt, mit der genau ein Drittel der im Sonnenlicht enthaltenen Energie in elektrische Energie gewandelt werden kann. Das Ergebnis wurde jetzt in der Fachzeitschrift Nature Energy veröffentlicht.


Solarzellen aus Silicium dominieren heute den globalen Photovoltaikmarkt mit einem Anteil von rund 90 Prozent. Forschung und Industrie arbeiten sich mit neuen technologischen Entwicklungsschritten an die theoretische Wirkungsgradgrenze des Halbleitermaterials Silicium heran. Gleichzeitig gehen sie neue Wege, um eine neue Generation von noch effizienteren Solarzellen zu entwickeln. Die jetzt erzielte hohe Umwandlungseffizienz einer Mehrfachsolarzelle auf Silicium erreichten die Forscher durch 0.002 mm dünne Halbleiterschichten – weniger als ein zwanzigstel der Dicke eines Haars – aus III-V-Verbindungshalbleitern, die auf eine Siliciumsolarzelle aufgebracht werden.

Solarstrom ressourcenschonend herstellen
Das sichtbare Licht wird effizient in einer ersten Solarzelle aus Gallium-Indium-Phosphid absorbiert, das nahe Infrarotlicht in Galliumarsenid und längerwelliges Licht schliesslich in Silicium. So können die Wirkungsgrade heutiger Siliciumsolarzellen signifikant gesteigert werden. »Die Photovoltaik ist eine der wichtigsten Säulen für die Energiewende«, sagt Andreas Bett, Institutsleiter des Fraunhofer ISE. »Die Kosten sind inzwischen so weit gesunken, dass die Photovoltaik eine wirtschaftliche Alternative zu konventionellen Energien darstellt. Aber diese Entwicklung ist noch lange nicht am Ende, und das neue Ergebnis zeigt, wie wir durch höhere Wirkungsgrade den Materialverbrauch reduzieren und damit nicht nur die Kosten noch weiter optimieren, sondern Solarstrom auch ressourcenschonend herstellen können.«

Leicht integrierbar
Bereits im November 2016 hatten die Freiburger Solarforscher mit ihrem Industriepartner EVG einen Wirkungsgrad von 30.2 Prozent demonstriert und diesen im März 2017 auf 31.3 Prozent erhöht. Nun konnten sie die Lichtabsorption und die Ladungstrennung im Silicium noch einmal deutlich verbessern und damit einen neuen Rekordwert von 33.3 Prozent erzielen. Die Rekordzelle mit dem neuen Ansatz gleicht von aussen einer herkömmlichen Solarzelle mit zwei Kontakten und kann somit leicht in Photovoltaikmodule integriert werden. Die Technologie hat auch die Jury der GreenTec Awards 2018 überzeugt, sie wählte diese Entwicklung unter die Top drei in der Kategorie Energie.

Die Technologie
Beim Konzept der Mehrfachsolarzellen übertrugen die Forscher 1.9 µm Mikrometer dünne III-V-Halbleiterschichten auf Silicium. Die Verbindung gelang ihnen mittels eines aus der Mikroelektronik bekannten Verfahrens, dem direkten Waferbonden. Die Oberflächen wurden in einer EVG580-Combond-Kammer im Hochvakuum mit Hilfe eines Ionenstrahls deoxidiert und anschliessend unter Druck miteinander verpresst. Es entsteht eine Einheit, indem die Atome der III-V Oberfläche Bindungen mit dem Silicium eingehen. Der Solarzelle sieht man die komplexe innere Struktur nicht an, sie besitzt wie herkömmliche Siliciumsolarzellen einen einfachen Vorder- und Rückseitenkontakt und kann wie diese in PV-Module integriert werden.

Die Mehrfachsolarzelle auf Siliciumbasis weist eine Abfolge von übereinander gestapelten Teilzellen aus Gallium-Indium-Phosphid (GaInP), Gallium-Arsenid (GaAs) und Silicium (Si) auf, die intern durch sogenannte Tunneldioden verschaltet sind. Die oberste Zelle aus GaInP absorbiert Strahlung zwischen 300 und 670 nm, die GaAs-Zelle zwischen 500 und 890 nm und die Si-Zelle zwischen 650 und 1180 nm. Die III-V Schichten wurden zunächst auf einem GaAs Substrat epitaktisch abgeschieden und dann auf eine speziell angepasste Siliciumsolarzellenstruktur gebondet. Hierbei wurden auf der Vorder- und Rückseite des Siliciums Tunneloxid passivierte Kontakte (TOPCon) aufgebracht. Anschliessend wurde das GaAs Substrat entfernt, ein nanostrukturierter Rückseitenkontakt zur Weglängenverlängerung des Lichts aufgebracht sowie ein Vorderseiten Kontaktgitter und eine Antireflexbeschichtung.

Noch grosse Herausforderungen zu meistern
Auf dem Weg zu einer industriellen Fertigung der III-V/Si Mehrfachsolarzelle müssen die Kosten der III-V-Epitaxie und der Verbindungstechnologie mit Silicium weiter gesenkt werden. Hier liegen grosse Herausforderungen, die die Freiburger Fraunhofer-Forscher in zukünftigen Entwicklungsvorhaben in ihrem neu entstehenden Zentrum für höchsteffiziente Solarzellen lösen wollen. Dort sollen sowohl III-V- als auch Siliciumtechnologien der nächsten Generation entwickelt werden. Zielsetzung ist es, in Zukunft höchsteffiziente Solarmodule mit mehr als 30 Prozent Wirkungsgrad zu ermöglichen.

Text: Fraunhofer-Institut für solare Energiesysteme ISE

0 Kommentare

Kommentar hinzufügen

Partner

  • Agentur Erneuerbare Energien und Energieeffizienz

Job-Plattform

Suchen Sie einen Mitarbeitenden 
oder eine Stelle? 
Bei uns sind Sie richtig!

Hier geht's weiter >>

Aktuelle Jobs

Beteiligungsmanager / Asset Manager Region Nordeuropa (m/w) 100% mit Fremdsprache‐Kenntnissen

Das Aufgabengebiet umfasst das Asset‐Management für unsere Kraftwerks‐Gesellschaften in Europa (mit Fokus Wind Deutschland)...

Ist Ihr Unternehmen im Bereich erneuerbare Energien oder Energieeffizienz tätig? Dann senden sie ein e-Mail an info@ee-news.ch mit Name, Adresse, Tätigkeitsfeld und Mail, dann nehmen wir Sie gerne ins Firmenverzeichnis auf.

Newsletter abonnieren

Follow us