Das intelligente Rotorblatt, das sogenannte Smart Blade, passt sich der Windstärke an. Durch eine bewegliche Hinterkante, einen Vorflügel und Klappen im Rotorblatt, werden die Windströmungen umgelenkt. ©Bild: DLR

FVWE: Neue Ideen für stabilere und leichtere Rotorblätter

(FI/IWES) Wie können Rotorblätter von Windenergieanlagen Strom in Zukunft noch effizienter produzieren – sowohl in den windstarken Offshore-Gebieten als auch in windschwächeren Regionen im Binnenland? Im Projekt SmartBlades entwickelten und prüften die Forscher des Forschungsverbundes Windenergie (FVWE) neue Ideen für intelligente Rotorblätter, die sich dem Wind anpassen können.


Zum Abschluss des Projektes SmartBlades stellten die Forscher am 3. und 4. Februar 2016 ihre Ergebnisse in Stade bei einer Konferenz mit nationalen und internationalen Gästen aus Wissenschaft und Industrie vor. SmartBlades war ein vom deutschen Bundesministerium für Wirtschaft und Energie mit rund zwölf Millionen Euro gefördertes dreijähriges Forschungsprojekt.

Smart Blades passen sich an
Ein Rotorblatt einer Windenergieanlage ist inzwischen bis zu 85 Meter lang, die Anlagen reichen in Höhen von über 200 Metern. Das bedeutet, dass Rotorblätter aufgrund der ungleichmässigen Windverteilung in Bodennähe und im oberen Teil der Anlage einer stark schwankenden Windlast ausgesetzt sind. Die Folge: hohe Belastungen für das Material des Rotorblattes und eine grosse Herausforderung bei der Regelung der Anlage. Vor allem bei stark böigem Wind kann die Windlast so gross sein, dass die Betreiber ihre Anlagen sogar abschalten müssen, um Schäden zu vermeiden. Wirtschaftlich ist das schlecht, denn starker Wind sorgt für gute Stromerträge. Ideal wären Rotorblätter, die ihre Geometrie an die lokalen Windeinwirkungen anpassen können. Möglich wird dies durch aktive und passive Technologien, mit denen sich die einzelnen Rotorblätter auf die lokalen Windgegebenheiten einstellen können - sogenannte Smart Blades. Wissenschaftler des FVWE mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR), dem Fraunhofer IWES und dem ForWind, dem Zentrum für Windenergieforschung der Universitäten Oldenburg, Hannover und Bremen haben im Projekt SmartBlades die Wirkung dieser Technologien untersucht. Entwicklern und Betreibern von Anlagen bieten die Ergebnisse des Projektes neues Know-how und Werkzeuge um effektivere, kosteneffizientere und zuverlässigere Anlagendesigns auf den Markt zu bringen.

Intelligente Strukturen reagieren auf Windturbulenz
Wenn sich ein Rotorblatt bei starkem Wind verdreht, so dass es dem Wind weniger Angriffsfläche bietet, sprechen die Wissenschaftler von einer Biege-Torsions-Kopplung. Da diese Biegung allein durch die Kräfte des Windes hervorgerufen wird, handelt es sich um sogenannte passive Mechanismen. Dabei wurden zwei verschiedene Ansätze verfolgt, die diesen Effekt bewirken. Zum einen wurde eine sichelförmige Geometrie untersucht, zum anderen eine besondere Struktur der materiellen Bauweise des Rotorblattes. Beim strukturellen Ansatz werden die Glasfasern, aus denen das Rotorblatt aufgebaut ist, so gelegt, dass es sich bei unterschiedlichen Windgeschwindigkeiten verdreht und den Anstellwinkel somit lokal anpasst. "Die Vorteile der Mechanismen sind, dass die Blätter weniger massiv und damit leichter gebaut werden können. Beide Verfahren haben das Potenzial die Stromausbeute von Windenergieanlagen zu verbessern", beschreibt Alper Sevinc, SmartBlades-Technologiekoordinator der biegetorsionsgekoppelten Rotorblätter vom Fraunhofer-Institut IWES. In einem zukünftigen Projekt wollen die Forscher die in der Simulation getesteten Mechanismen an bereits entworfenen Demonstrations-Rotorblättern testen.

Aktive Steuerelemente im Rotorblatt
Ein anderer Ansatz, den die Wissenschaftler verfolgt haben, sind aktive Mechanismen, die die Hinterkanten eines Rotorblattes verändern, womit Anlagenbetreiber die aerodynamischen Belastungen an einem Rotorblatt steuern können. Untersucht haben die Wissenschaftler dabei in sich bewegliche (formvariable) Hinterkanten, und starre Hinterkantenklappen. Das Konzept kommt aus der Luftfahrt und lässt sich mit den Klappen an Tragflächen von Flugzeugen vergleichen. Die Untersuchungen ergaben, dass beide Verfahren die Last am Rotorblatt effektiv vermindern. Der Wartungsaufwand bei starren Hinterkantenklappen ist jedoch durch die auftretende Verschmutzung der beweglichen Teile so erheblich, dass die Vorteile von beweglichen Hinterkanten klar überwiegen. Perspektivisch ist auch für diesen Ansatz der Bau von Demonstrationsblättern geplant.

Optimales Profil durch bewegliche Flügel
Die Wissenschaftler untersuchten auch, ob ein beweglicher Vorflügel an einem Rotorblatt die Effizienz von Windenergieanlagen unter stark schwankenden turbulenten Windbedingungen verbessern kann. Dieser Mechanismus erlaubt es, ein Rotorblatt in einem grossen Windgeschwindigkeitsbereich optimal zu nutzen. "Der Vorteil liegt hierbei in der Reaktionsgeschwindigkeit der Bewegung des Vorflügels, die eine schnelle Beeinflussung der wirkenden aerodynamischen Kräfte bei turbulenten Einström-bedingungen ermöglicht", kommentiert Michael Hölling, SmartBlades-Technologiekoor-dinator für Rotorblätter mit beweglichen Vorflügeln von Forwind, das Potential des adaptiven Vorflügels. Das Konzept des beweglichen Vorflügels wurde während des Projektes im Windkanal getestet und lieferte vielversprechende Ergebnisse für weitere Entwicklungen.

Zusätzlich haben die Forscher die Wirtschaftlichkeit der Technologieentwicklungen bewertet. In Simulationen haben sie alle Mechanismen mit einer State-of-the-Art-Referenz-anlage mit einem 80 Meter langen Rotorblatt verglichen, mit dem Ergebnis, dass viele der untersuchten Mechanismen Rotorblätter in Zukunft besser machen können. In einem nächsten Schritt hoffen die Forscher, ihre Ergebnisse an Full-Scale-Rotorblättern testen zu können.

Stabiles Fundament
Mit dem Projekt SmartBlades wurde eines der ersten grossen Forschungsprojekte des 2012 gegründeten Forschungsverbundes erfolgreich zu Ende geführt. "Die gute Zusammenarbeit des Konsortiums spiegelt sich in den vielversprechenden Ergebnissen des Projektes wieder. Das Projekt hat gezeigt, dass sich die unterschiedlichen Kompetenzen der Partner ergänzen und verknüpfen lassen", betont Ceyda Icpinar, SmartBlades-Projektmanagerin vom DLR-Institut für Faserverbundleichtbau und Adaptronik in Braunschweig. Mit dem erfolgreichen Abschluss des Projektes ist nicht nur der gemeinsame Weg für Folgeaktivitäten im Bereich der intelligenten Rotorblätter geebnet, es wurde auch ein stabiles Fundament gelegt, für weitere Forschungsvorhaben im gesamten Windenergiebereich.

Text: Fraunhofer-Institut für Windenergie und Energiesystemtechnik IWES

show all

1 Kommentare

Gernot Kloss

Dies ist wieder einmal der Beweis, dass wir in Deutschland auch dann noch versuchen veraltete Technologien weiter zu perfektionieren, wenn es hierzu schon längst bessere Alternativen gibt. Die hier beschriebenen Probleme treten bei Blättern von H-Rotoren mit senkrechter Achse nicht auf, obwohl diese Technik erst am Anfang ihrer Entwicklung steht. Die bisher angenommene, geringere Leistungsausbeute von H-Rotoren gegenüber Rotoren mit waagerechter Achse wird durch neuere Entwicklungen widerlegt.

Kommentar hinzufügen

Partner

  • Agentur Erneuerbare Energien und Energieeffizienz

Ist Ihr Unternehmen im Bereich erneuerbare Energien oder Energieeffizienz tätig? Dann senden sie ein e-Mail an info@ee-news.ch mit Name, Adresse, Tätigkeitsfeld und Mail, dann nehmen wir Sie gerne ins Firmenverzeichnis auf.

Top

Gelesen
|
Kommentiert